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Abstract The Nernst–Planck equations with some addi-

tional assumptions was used in this study to investigate the

forward kinetics and ion-exchange mechanism of heavy

metal ions viz. Ni2?–H?, Cu2?–H?, Mn2?–H? and Zn2?–

H? on the surface of carboxymethyl cellulose Sn(IV)

phosphate composite nano-rod-like cation-exchanger. It

was observed that heavy metals’ exchange processes were

imparted by the particle diffusion-controlled phenomenon.

Some physical parameters i.e., fractional attainment of

equilibrium U(s), self-diffusion coefficients (Do), energy of

activation (Ea), and entropy of activation (DS*) were esti-

mated. These investigations revealed that the equilibrium is

attained faster at higher temperature probably because of

availability of thermally enlarged matrix of carboxymethyl

cellulose Sn(IV) phosphate composite nano-rod-like cat-

ion-exchange material. The physical parameters observed

for this composite cation exchanger were also compared

with other composite ion exchangers. The results showed

that the ion-exchange phenomenon is more feasible on the

surface of this composite cation exchanger as compared

with the other ion exchangers which indicated the useful-

ness of this composite ion exchanger in various

applications.
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Abbreviations

C19H42BrN (CTAB) N-Cetyl-N,N,N-trimethyl

ammonium bromide

C5H5N Pyridine

DMW Demineralize water

EDTA Ethylene diamine tetra acetic acid

i.d. Internal diameter

List of symbols

U(s) Fractional attainment of equilibrium

Do Self diffusion coefficient

Ea Energy of activation

DS* Entropy of activation

DHþ Inter diffusion coefficient of counter ion H?

DM2þ Inter diffusion coefficient of counter ion M2?

ro Particle radius

a Mobility ratio

ZHþ=ZM2þ Charge ratio

s A dimensionless time parameter

H? Hydrogen ion

M2? Metal ion

S Slope

D The ionic jump distance

k The Boltzmann constant

R The gas constant

h Plank’s constant

T Temperature

Introduction

Organic–inorganic type composite materials is the latest

study of interest in different laboratories for various

applications [1–5], owing to their better thermal, chemical,

and radiation stabilities compared with organic as well as
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inorganic materials. Particularly, the applications of com-

posite materials as ion exchangers have been of great

interest in our laboratory in view of increasing environ-

mental pollution concern [6–14]. In general, these com-

posite ion-exchange materials have been developed by

combination of insulating or conducting organic polymers

as supporting materials and inorganic precipitates of

polyvalent metal acid salt precursors by sol–gel method.

Pristine inorganic ion exchangers and organic resins, for

ion-exchange applications, have been of limited interest

due to chemical and thermal stabilities, respectively. Fur-

thermore, inorganic ion exchangers are reported to be not

very much reproducible and granular thereby limiting their

suitability for column operation. To overcome the limita-

tion of pristine ion exchangers of organic and inorganic in

nature, the organic polymer carboxymethyl cellulose was

incorporated into the matrices of inorganic ion exchanger

Sn(IV) phosphate leading to the formation of a new com-

posite carboxymethyl cellulose Sn(IV) phosphate nano rod-

like cation ion exchanger with better chemical, thermal,

mechanical, granulometric, and ion-exchange properties

[15]. Owing to the enhanced properties of composite

materials, researchers have been motivated to have various

applications of organic–inorganic composite ion exchang-

ers in analytical and environmental chemistry [16–37].

New applications of composite materials have been

explored in the fields of heterogeneous catalysis [38, 39],

protective coatings [40], solid polymer electrolyte mem-

brane fuel cells [41, 42], ion-selective membrane elec-

trodes [37, 43], gas perm-selectivity [44, 45], ion transport

[46, 47], and ion-exchange [48]. In most of these fields,

information related to the ion-exchange kinetics and the

mobility of counter ions in the lattice structure is needed.

Kinetics studies envisage the three aspects of ion-exchange

process, viz., the mechanism of ion exchange, rate-deter-

mining step, and the rate laws obeyed by the ion-exchange

system. Moreover, the earlier approaches [49–52] of

kinetic behavior were based on the old Bt criterion [53, 54],

which is not very useful for a true ion-exchange (non-

isotopic exchange) process because of the different effec-

tive diffusion coefficients and different mobilities [55] of

the exchanging ions involved. The Nernst–Planck [56, 57]

equations with some additional assumptions provide more

appropriate values in obtaining the values of the various

kinetic parameters precisely. Though many studies on the

kinetics of ion exchange on organic and inorganic ion

exchangers have been reported [58–61], relatively less

information exists on the kinetics of exchange on com-

posite ion-exchange materials. Hence, in this study carboxy-

methyl cellulose Sn(IV) phosphate nano-rod-like composite

cation-exchanger was selected to evaluate the ion-exchange

mechanism occurring over the surface of the cation exchanger.

However, the synthesis, physico-chemical characterization,

and thermodynamic study for the adsorption of pyridine of this

composite cation exchanger have also been studied and results

are published [15].

Experimental

Reagents and instruments

The main reagents, viz., stannic chloride, SnCl4�5H2O (95%),

carboxymethyl cellulose sodium salt, tri-sodium ortho-

phosphate dodecahydrate, Na3PO4�12H2O (98%), and

N-Cetyl-N,N,N-trimethyl ammonium bromide, C19H42BrN

(CTAB) (99%) used for the synthesis of the composite nano-

rod-like cation-exchange material were obtained from

Central Drug House (CDH) Pvt. Ltd., India. Pyridine, C5H5N

(99%), nitric acid, HNO3 (35%) and hydrochloric acid, HCl

(35%) were obtained from E. Merck, India. Solutions for

kinetic measurement were made using analytic reagent grade

nitrate salts of Ni, Cu, Mn, and Zn (99%) obtained from

Central Drug House Pvt. Ltd. India. The other reagents and

chemicals used were of analytic reagent grade and used as

received. A digital pH meter (Elico LI-10, India) to adjust the

pH and a water bath incubator shaker for all equilibrium

studies having a temperature variation of ±0.5 �C (MSW-

275, India) were used.

Preparation of organic–inorganic composite cation-

exchange material

Organic–inorganic composite cation exchanger carboxy-

methyl cellulose Sn(IV) phosphate composite nano-rod-

like cation-exchange material was prepared as reported by

Ali Mohammad et al. [15]. The procedure for the prepa-

ration is given below.

Preparation of reagent solutions

The solutions of 0.1 M stannic chloride (SnCl4�5H2O) were

prepared in 4 M HCl while 0.1 M tri-sodium orthophos-

phate (Na3PO4�12H2O), N-cetyl-N,N,N trimethyl ammo-

nium bromide (CTAB), and carboxymethyl cellulose

sodium salt (CMC) were prepared in demineralized water

(DMW).

Preparation of carboxymethyl cellulose Sn(IV) phosphate

composite nano-rod-like cation-exchange material

Sn(IV) phosphate was prepared by mixing 0.1 M stannic

chloride solution with aqueous solution of 0.1 M tri-

sodium orthophosphate in 1:2 (V/V) ratios at room tem-

perature (25 ± 2 �C). White precipitate was obtained,

when pH of the solution was adjusted to 1 by adding
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aqueous ammonia/hydrochloric acid with constant stirring.

5 mL of CTAB was added to the precipitate of Sn(IV)

phosphate and stirred for 10 min. Finally, 2 g of car-

boxymethyl cellulose sodium salt dissolved in 45 mL of

DMW was added to the precipitate of Sn(IV) phosphate,

stirred for 2 h, and finally kept for 24 h at room tempera-

ture (25 ± 2 �C) for digestion. The gels of Sn(IV) phos-

phate and carboxymethyl cellulose Sn(IV) phosphate

composite cation exchanger were filtered off by suction;

washed with DMW to remove excess acid. The washed gel

was dried over P4O10 at 40 �C in an oven. The dried

product was washed again with acetone to remove impu-

rities present in the material, and dried at 40 �C in an oven.

The composite nano-rod-like cation exchanger carries fixed

phosphate ionic groups which are converted into the form

of H?/counter ion by treating with 1 M HNO3 for 24 h

with occasional shaking and intermittently replacing the

supernatant liquid with fresh acid 2–3 times. The excess

acid was removed after several washings with DMW and

finally dried at 50 �C. The composite nano-rod-like cation

exchanger was cracked and the particle size of approxi-

mately 125 lm was obtained by sieving, and then stored in

desiccator. The ion-exchange capacity was determined by

standard column process. For this purpose, one gram (1 g)

of the dry cation exchanger samples in the H?-forms were

taken into different glass columns having an internal

diameter (i.d.) *1 cm and fitted with glass wool support at

the bottom. The bed length was approximately 1.5 cm

long. 1 M NaNO3 as eluent was used to elute the H? ions

completely from the cation-exchange columns, maintaining

a very slow flow rate (*0.5 mL min-1). The effluents

were titrated against a standard 0.1 M NaOH solution for

estimating the total ions liberated in the solutions using

phenolphthalein indicator and the ion-exchange capacities

in meq dry g-1 are determined. The conditions of the

preparation, the ion-exchange capacities, and the physical

appearances of the inorganic and composite cation

exchanger are given in Table 1. The ion-exchange capacity

of composite nano-rod-like cation exchanger, carboxy-

methyl cellulose Sn(IV) phosphate, was found to be

2.13 meq dry g-1, which is higher than inorganic coun-

terpart Sn(IV) phosphate ion-exchange capacity of 1.2 meq

dry g-1. Thus, sample S-2 was selected for detailed kinetic

studies.

Kinetic measurements

Composite cation-exchange particles of mean radius

*125 lm (50–70 mesh) in H? form were used to evaluate

various kinetic parameters. The rate of exchange was

determined by limited batch technique as follows:

A total of 20-mL fractions of the 0.03 M metal ion

solutions (Ni, Cu, Mn, and Zn) were shaken with 200 mg

of the cation exchanger in H?-form in several stoppered

conical flasks at desired temperatures [25, 35, 50, and 65

(±0.5) �C] for different time intervals (1.0, 2.0, 3.0, 4.0,

and 25 min). The supernatant liquid was removed imme-

diately and determinations were made as usual by ethylene

diamine tetra acetic acid (EDTA) titrations [62]. Each set

was repeated four times and the mean values were taken for

calculation.

Results and discussions

Sol–gel method was employed to prepare carboxymethyl

cellulose Sn(IV) phosphate composite cation exchanger

(Table 1). Composite ion-exchange material possessed

higher Na? ion-exchange capacity of 2.13 meq dry g-1 as

compared to that of inorganic counterpart (1.20 meq dry

g-1). Composite cation-exchange particles of mean radius

of *125 lm (50–70 mesh) in H? form were used to study

the kinetic behavior of heavy metal ions viz. Ni2?–H?,

Cu2?–H?, Mn2?–H? and Zn2?–H?. The rate-determining

step in ion-exchange process may be either particle or film

diffusion. Approximated Nernst–Planck equations are used

to predict whether particle or film diffusion will be rate-

controlling step under a given set of conditions. The infi-

nite time of exchange is the time required to accomplish

the equilibrium. Thus, the rate of exchange for metal ions

becomes independent of time after this time interval. Fig-

ure 1 showed that equilibrium for Mg2?–H? exchange at

35 �C was accomplished within 20 min. Similar behavior

was also observed for Ni2?–H?, Cu2?–H?, Mn2?–H?, and

Zn2?–H? exchanges. Therefore, 20 min was assumed to be

the infinite time of exchange for all exchange systems. A

study of the concentration effect on the rate of exchange at

35 �C showed that the initial rate of exchange was pro-

portional to the metal ion concentration, and s versus time

Table 1 Conditions for the preparation of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation exchanger

Samples Mixing volume ratio (V/V) Carboxymethyl

cellulose

sodium salt added/g

Color of beads

obtained after drying

Na? ion exchange

capacity/meq dry g-1

0.1 M SnCl4�5H2O

in 4 M HCl

0.1 M

Na3PO4�12H2O

pH

1 1 2 1 – White 1.20

2 1 2 1 2 White 2.13
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(t) (t in min) plots are also straight lines passing through the

origin at and above 0.03 M of metal ion concentration

(data not shown), which confirms the particle diffusion-

controlled phenomenon. Below the metal ion concentration

of 0.03 M, film diffusion control phenomenon was more

prominent.

Thus, kinetic measurements were achieved under parti-

cle diffusion-controlled ion-exchange phenomenon for

the exchanges of Ni2?–H?, Cu2?–H?, Mn2?–H?, and

Zn2?–H?. The kinetic results are expressed in terms of the

fractional attainment of equilibrium, U(s) with time

according to the equation:

UðsÞ ¼ the amount of exchange at time ‘t0

the amount of exchange at infinite time
ð1Þ

Plots of U(s) versus time (t) (t in min), for Ni2?–H?,

Cu2?–H?, Mn2?–H?, and Zn2?–H? exchanges (Fig. 2)

showed that the fractional attainment of equilibrium was

faster at a higher temperature suggesting that the

mobility of the ions increased with an increase in

temperature.

Each value of U(s) will have a corresponding value of s,

a dimensionless time parameter. The numerical results for

the calculation of s can be expressed by Nernst–Planck

explicit approximation [63–65]:

UðsÞ ¼ f1� exp½p2ðf1ðaÞsþ f2ðaÞs2 þ f3ðaÞs3Þ�g1=2 ð2Þ

where s is the half time of exchange = DHþ t=r2
o, a is the

mobility ratio = DHþ=DM2þ ; ro is the particle radius, DHþ

and DM2þare the inter diffusion coefficients of counter ions

H? and M2?, respectively, in the exchanger phase. The

three functions f1(a), f2(a), and f3(a) depend on the mobility

ratio (a) and the charge ratio ZHþ=ZM2þð Þ of the exchanging

ions. Thus, they have different expressions as given below.

When the exchanger is taken in the H?-form and the

exchanging ion is M2?, for 1 B a B 20, as in the present

case, the three functions have the values:

1
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Fig. 1 A plot of U(s) versus t (time) for M2?–H? exchanges at 35 �C

on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-

like cation exchanger for the determination of infinite time
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Fig. 2 Plots of U(s) versus

t (time) for Ni2?–H?, Cu2?–H?,

Mn2?–H?, and Zn2?–H?

exchanges at different

temperatures on carboxymethyl

cellulose Sn(IV) phosphate

composite nano-rod-like cation

exchanger
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f1ðaÞ ¼ �
1

0:64þ 0:36a0:668

f2ðaÞ ¼ �
1

0:96� 2:0a0:4635

f3ðaÞ ¼ �
1

0:27þ 0:09a1:140

The value of s was obtained on solving Eq. 2 using a

computer. The plots of s versus time (t) at four different

temperatures for Ni2?–H?, Cu2?–H?, Mn2?–H?, and

Zn2?–H? exchanges are shown in Fig. 3 are straight lines

passing through the origin, confirming the particle diffu-

sion control phenomenon for M2?–H? exchanges at a

metal ion concentration of 0.03 M. It is obvious that the

particle diffusion-controlled exchange is more rapid when

the counter ion which is initially in the ion exchanger is the

faster one, while for the film diffusion-controlled

exchange, the counter ion which is preferred by the ion

exchanger is taken up at the higher rate and released at the

lower rate.

The slopes (S values) of various s versus time (t) plots

are given in Table 2. The S values are related to DHþ as

follows:

S ¼ DHþ= r2
o ð3Þ

The values of -logDHþ obtained by using Eq. 3 plotted

against 1/T are straight lines as shown in Fig. 4, thus

verifying the validity of the Arrhenius relation:
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Fig. 3 Plots of s versus t (time)

for Ni2?–H?, Cu2?–H?, Mn2?–

H?, and Zn2?–H? exchanges at

different temperatures on

carboxymethyl cellulose Sn(IV)

phosphate composite nano-rod-

like cation exchanger

Table 2 Slopes of various s versus time (t) plots on carboxymethyl

cellulose Sn(IV) phosphate composite nano-rod-like cation exchanger

at different temperatures

Migrating ions S/s-1 9 102

Temperature

25 �C 35 �C 50 �C 65 �C

Cu(II) 6.6 8.2 10.3 11.6

Ni(II) 5.0 5.8 6.7 7.6

Zn(II) 10.2 13.6 15.0 16.6

Mn(II) 7.3 9.1 11.1 13.5

y = –0.6567x – 6.7284

R2 = 0.992

y = –0.4847x – 7.1455

R2 = 0.9927

y = –0.5593x – 7.0837

R2 = 0.9963

y = –0.4504x – 7.5886

R2 = 0.9921

–9.2
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–9
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2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4
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Fig. 4 Plots of -log DHþ versus 103 T-1/K-1 for Ni2?–H?, Cu2?–

H?, Mn2?–H?, and Zn2?–H? on exchanges on carboxymethyl

cellulose Sn(IV) phosphate composite nano-rod-like cation exchanger
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DHþ ¼ Doexpð�Ea=RTÞ ð4Þ

Do is obtained by extrapolating these lines and using the

intercepts at the origin. The activation energy (Ea) is then

calculated with the help of the Eq. 4, putting the value of

DHþ at 273 K. The entropy of activation (DS*) was then

calculated by substituting Do in Eq. 5.

Do ¼ 2:72d2ðkT=hÞ expðDS�=RÞ ð5Þ

where d is the ionic jump distance taken as 5 9 10-10 m,

k is the Boltzmann constant, R is the gas constant, h is

Plank’s constant, and T is taken as 273 K. The values of the

diffusion coefficient (Do), energy of activation (Ea), and

entropy of activation (DS*) thus obtained are summarized

in Table 3.

No definite relation between the ionic radii and mobility

of metal ions with activation energy and entropy of activa-

tion was observed. However, the positive values of activa-

tion energy indicated that the minimum energy is required to

facilitate the forward (M2?–H?) ion-exchange process.

Negative values of the entropy of activation (DS*) suggest a

greater degree of order achieved during the forward ion-

exchange (M2?–H?) process. A comparison of forward ion-

exchange kinetics behavior of this composite cation

exchanger with those of various other composite cation

exchangers is given in Figs. 5 and 6. It was observed that the

proposed composite cation exchanger possessed lower

activation energy to facilitate the ion-exchange process

(Fig. 5). Lower negative values of DS* indicated that the

randomness of this composite cation exchanger is much

higher than other composite materials (Fig. 6). Thus, the ion

exchange process is spontaneous in the forward direction

than the other composite cation-exchange materials.

Conclusions

The ion-exchange kinetic study showed that equilibrium is

attained faster at a higher temperature which may be due to

the higher diffusion rate of ions through the thermally

enlarged interstitial positions of the ion-exchange matrix.

The kinetic-exchange in the forward direction (M2?–H?)

for this composite cation exchanger is being governed by

the particle diffusion-controlled phenomenon which is

faster than the film diffusion-controlled phenomenon.

Activation energy is calculated by using verified and val-

idated Arrhenius equation which showed that lower energy

is required to accomplish the ion exchange process. The

negative values of (DS*) indicate that the ion-exchange

process (M2?–H?) is more feasible under given set of

conditions on this composite cation-exchange material.

Table 3 Values of Do, Ea, and DS* for the exchange of H? ions with some metal ions on carboxymethyl cellulose Sn(IV) phosphate composite

nano-rod-like composite cation-exchange material

Metal ion exchange

with H(I)

109 Ionic

mobility/m2 V-1 s-1
102 Ionic

radii/nm

108 Do/m2 s-1 102 Ea/kJ mol-1 DS*/J K-1 mol-1

Cu(II) 57 7.0 8.2604 55.9 -0.7508

Ni(II) 52 7.8 2.5823 45.04 -1.2557

Zn(II) 56 8.3 7.1614 48.4 -0.8128

Mn(II) 55 9.1 0.18707 65.6 -0.3958
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Fig. 5 Plots of activation energy (Ea) of Ni2?–H?, Cu2?–H?, Mn2?–

H?, Zn2?–H? for various composite cation exchangers
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Fig. 6 Plots of entropy of activation (DS*) of Ni2?–H?, Cu2?–H?,

Mn2?–H?, Zn2?–H? for various composite cation exchangers
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